MANE 4240 & CIVL 4240
Introduction to Finite Elements

Prof. Suvranu De

Introduction to 3D Elasticity
Reading assignment:

Appendix C+ 6.1+ 9.1 + Lecture notes

Summary:

• 3D elasticity problem
 • Governing differential equation + boundary conditions
 • Strain-displacement relationship
 • Stress-strain relationship
• Special cases
 2D (plane stress, plane strain)
 Axisymmetric body with axisymmetric loading
• Principle of minimum potential energy
1D Elasticity (axially loaded bar)

A(x) = cross section at x
b(x) = body force distribution (force per unit length)
E(x) = Young’s modulus
u(x) = displacement of the bar at x

1. **Strong formulation**: Equilibrium equation + boundary conditions

Equilibrium equation
\[
\frac{d\sigma}{dx} + b = 0; \quad 0 < x < L
\]

Boundary conditions
\[
u = 0 \quad \text{at} \quad x = 0
\]
\[
EA \frac{du}{dx} = F \quad \text{at} \quad x = L
\]
2. Strain-displacement relationship: $\varepsilon(x) = \frac{du}{dx}$

3. Stress-strain (constitutive) relation: $\sigma(x) = E \varepsilon(x)$

E: Elastic (Young’s) modulus of bar
Problem definition

3D Elasticity

V: Volume of body
S: Total surface of the body

The deformation at point \(\mathbf{x} = [x, y, z]^T \)

is given by the 3 components of its displacement

\[\mathbf{u} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \]

NOTE: \(\mathbf{u} = \mathbf{u}(x, y, z) \), i.e., each displacement component is a function of position
3D Elasticity:
EXTERNAL FORCES ACTING ON THE BODY

Two basic types of **external forces** act on a body

1. **Body force** (force per unit **volume**) e.g., weight, inertia, etc
2. **Surface traction** (force per unit **surface area**) e.g., friction
Body force: distributed force per unit volume (e.g., weight, inertia, etc)

$$X = \begin{bmatrix} X_a \\ X_b \\ X_c \end{bmatrix}$$

NOTE: If the body is accelerating, then the inertia force

$$\rho \vec{\ddot{u}} = \begin{bmatrix} \rho \dddot{u} \\ \rho \dot{\dddot{v}} \\ \rho \dddot{w} \end{bmatrix}$$

may be considered as part of \vec{X}

$$\vec{X} = \vec{\tilde{X}} - \rho \vec{\dddot{u}}$$
Surface Traction

Traction: Distributed force per unit surface area

Volume element dV

Volume (V)

\[
\mathbf{T}_S = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}
\]
If I take out a chunk of material from the body, I will see that, due to the external forces applied to it, there are reaction forces (e.g., due to the loads applied to a truss structure, internal forces develop in each truss member). For the cube in the figure, the **internal reaction forces per unit area** *(red arrows)* , on each surface, may be decomposed into three orthogonal components.
3D Elasticity

\(\sigma_x, \sigma_y \) and \(\sigma_z \) are normal stresses. The rest 6 are the shear stresses. Convention \(\tau_{xy} \) is the stress on the face perpendicular to the x-axis and points in the +ve y direction. Total of 9 stress components of which only 6 are independent since \(\tau_{xy} = \tau_{yx} \)

\[\tau_{yz} = \tau_{zy} \]
\[\tau_{zx} = \tau_{xz} \]

The stress vector is therefore

\[\sigma = \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{yx} \\ \tau_{xz} \end{pmatrix} \]
Strains: 6 independent **strain components**

\[\varepsilon = \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix} \]

Consider the equilibrium of a differential volume element to obtain the 3 **equilibrium equations** of elasticity

\[\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X_a = 0 \]

\[\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + X_b = 0 \]

\[\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + X_c = 0 \]
Compactly;

\[
\begin{bmatrix}
\frac{\partial}{\partial x} & 0 & 0 \\
0 & \frac{\partial}{\partial y} & 0 \\
0 & 0 & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x}
\end{bmatrix}
\]

where

\[
\partial^T \sigma + X = 0
\]

(1)
3D elasticity problem is completely defined once we understand the following three concepts

- **Strong formulation** (governing differential equation + boundary conditions)
- **Strain-displacement relationship**
- **Stress-strain relationship**
1. **Strong formulation of the 3D elasticity problem:** “Given the externally applied loads (on S_T and in V) and the specified displacements (on S_u) we want to solve for the resultant displacements, strains and stresses required to maintain equilibrium of the body.”
Equilibrium equations

\[\partial^T \sigma + X = 0 \quad \text{in} \quad V \]

(1)

Boundary conditions

1. **Displacement boundary conditions**: Displacements are specified on portion \(S_u \) of the boundary

\[u = u^{\text{specified}} \quad \text{on} \quad S_u \]

2. **Traction (force) boundary conditions**: **Traction**s are specified on portion \(S_T \) of the boundary

Now, how do I express this mathematically?
Volume element \(dV \)

Traction: Distributed force per unit area

\[
\bar{T}_S = \begin{bmatrix}
p_x \\
p_y \\
p_z
\end{bmatrix}
\]
Traction: Distributed force per unit area

\[
T_S = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix}
\]

If the unit outward normal to \(S_T\) :
\[
n = \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix}
\]

Then
\[
\begin{align*}
p_x &= \sigma_x n_x + \tau_{xy} n_y + \tau_{xz} n_z \\
p_y &= \tau_{xy} n_x + \sigma_y n_y + \tau_{yz} n_z \\
p_z &= \tau_{xz} n_x + \tau_{zy} n_y + \sigma_z n_z
\end{align*}
\]
Consider the equilibrium of the wedge in x-direction

\[p_x \, ds = \sigma_x \, dy + \tau_{xy} \, dx \]

\[\Rightarrow p_x = \sigma_x \frac{dy}{ds} + \tau_{xy} \frac{dx}{ds} \]

\[\Rightarrow p_x = \sigma_x n_x + \tau_{xy} n_y \]

Similarly

\[p_y = \tau_{xy} n_x + \sigma_y n_y \]
3D elasticity problem is completely defined once we understand the following three concepts

- **Strong formulation** (governing differential equation + boundary conditions)

- **Strain-displacement relationship**

- **Stress-strain relationship**
2. Strain-displacement relationships:

\[\varepsilon_x = \frac{\partial u}{\partial x} \]

\[\varepsilon_y = \frac{\partial v}{\partial y} \]

\[\varepsilon_z = \frac{\partial w}{\partial z} \]

\[\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \]

\[\gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \]

\[\gamma_{zx} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \]
Compactly; \[\mathbf{\varepsilon} = \partial \mathbf{u} \]

\[\mathbf{\varepsilon} = \begin{Bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{Bmatrix} \quad \partial = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \end{bmatrix} \quad \mathbf{u} = \begin{Bmatrix} u \\ v \\ w \end{Bmatrix} \]
In 2D

\[\varepsilon_x = \frac{A'B' - AB}{AB} = \frac{\left(dx + \left(u + \frac{\partial u}{\partial x} \cdot dx \right) - u \right) - dx}{dx} = \frac{\partial u}{\partial x} \]

\[\varepsilon_y = \frac{A'C' - AC}{AC} = \frac{\left(dy + \left(v + \frac{\partial v}{\partial y} \cdot dy \right) - v \right) - dy}{dy} = \frac{\partial v}{\partial y} \]

\[\gamma_{xy} = \frac{\pi}{2} - \text{angle} \quad (C' \quad A' \quad B') = \beta_1 + \beta_2 \approx \tan \beta_1 + \tan \beta_2 \]

\[\approx \frac{\partial v}{\partial x} + \frac{\partial u}{\partial x} \]
3D elasticity problem is completely defined once we understand the following three concepts

- Strong formulation (governing differential equation + boundary conditions)
- Strain-displacement relationship
- Stress-strain relationship
3. Stress-Strain relationship:

Linear elastic material (Hooke’s Law)

\[\sigma = D \varepsilon \]

(3)

Linear elastic isotropic material

\[
D = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix}
1-\nu & \nu & \nu & 0 & 0 & 0 & 0 \\
\nu & 1-\nu & \nu & 0 & 0 & 0 & 0 \\
\nu & \nu & 1-\nu & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2}
\end{bmatrix}
\]
Special cases:

1. **1D elastic bar** (only 1 component of the stress (stress) is nonzero. All other stress (strain) components are zero) Recall the (1) equilibrium, (2) strain-displacement and (3) stress-strain laws

2. **2D elastic problems:** 2 situations
 - PLANE STRESS
 - PLANE STRAIN

3. **3D elastic problem:** special case-axisymmetric body with axisymmetric loading (we will skip this)
PLANE STRESS: Only the in-plane stress components are nonzero

Nonzero stress components $\sigma_x, \sigma_y, \tau_{xy}$

Assumptions:
1. $h<<D$
2. Top and bottom surfaces are free from traction
3. $X_c=0$ and $p_z=0$
PLANE STRESS Examples:

1. Thin plate with a hole

![Diagram of thin plate with a hole](image.png)

2. Thin cantilever plate

![Diagram of thin cantilever plate](image.png)
PLANE STRESS

Nonzero **stresses**: $\sigma_x, \sigma_y, \tau_{xy}$

Nonzero **strains**: $\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{xy}$

Isotropic linear elastic stress-strain law $\begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix}$

$\varepsilon_z = -\frac{\nu}{1-\nu}(\varepsilon_x + \varepsilon_y)$

Hence, the D matrix for the **plane stress case** is

$$D = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}$$
PLANE STRAIN: Only the in-plane strain components are nonzero

Nonzero strain components $\varepsilon_x, \varepsilon_y, \gamma_{xy}$

Assumptions:
1. Displacement components u,v functions of (x,y) only and $w=0$
2. Top and bottom surfaces are fixed
3. $X_c=0$
4. p_x and p_y do not vary with z
PLANE STRAIN

Examples:

1. Dam

2. Long cylindrical pressure vessel subjected to internal/external pressure and constrained at the ends
PLANE STRAIN

Nonzero stress: \(\sigma_x, \sigma_y, \sigma_z, \tau_{xy} \)

Nonzero strain components: \(\varepsilon_x, \varepsilon_y, \gamma_{xy} \)

Isotropic linear elastic stress-strain law \(\sigma = D \varepsilon \)

\[
\begin{pmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)}
\begin{bmatrix}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & \frac{1-2\nu}{2}
\end{bmatrix}
\begin{pmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{pmatrix}
\]

\(\sigma_z = \nu(\sigma_x + \sigma_y) \)

Hence, the \(D \) matrix for the plane strain case is

\[
D = \frac{E}{(1+\nu)(1-2\nu)}
\begin{bmatrix}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & \frac{1-2\nu}{2}
\end{bmatrix}
\]
Example problem

The square block is in \textit{plane strain} and is subjected to the following strains

\begin{align*}
\varepsilon_x &= 2xy \\
\varepsilon_y &= 3xy^2 \\
\gamma_{xy} &= x^2 + y^3
\end{align*}

Compute the displacement field (i.e., displacement components \(u(x,y) \) and \(v(x,y) \)) within the block
Solution

Recall from definition

\[\varepsilon_x = \frac{\partial u}{\partial x} = 2xy \quad (1) \]
\[\varepsilon_y = \frac{\partial v}{\partial y} = 3xy^2 \quad (2) \]
\[\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = x^2 + y^3 \quad (3) \]

Integrating (1) and (2)

\[u(x, y) = x^2y + C_1(y) \quad (4) \]
\[v(x, y) = xy^3 + C_2(x) \quad (5) \]

Arbitrary function of ‘x’

Arbitrary function of ‘y’
Plug expressions in (4) and (5) into equation (3)

\[
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = x^2 + y^3 \quad (3)
\]

\[
\Rightarrow \frac{\partial}{\partial y} \left[x^2 y + C_1(y) \right] + \frac{\partial}{\partial x} \left[xy^3 + C_2(x) \right] = x^2 + y^3
\]

\[
\Rightarrow x^2 + \frac{\partial C_1(y)}{\partial y} + y^3 + \frac{\partial C_2(x)}{\partial x} = x^2 + y^3
\]

\[
\Rightarrow \frac{\partial C_1(y)}{\partial y} + \frac{\partial C_2(x)}{\partial x} = 0
\]

Function of ‘y’ Function of ‘x’
Hence

\[
\frac{\partial C_1(y)}{\partial y} = -\frac{\partial C_2(x)}{\partial x} = C \quad \text{(a constant)}
\]

Integrate to obtain

\[
C_1(y) = Cy + D_1 \quad \text{D}_1 \text{ and } D_2 \text{ are two constants of integration}
\]

\[
C_2(x) = Cx + D_2
\]

Plug these back into equations (4) and (5)

(4) \(u(x, y) = x^2 y + Cy + D_1 \)

(5) \(v(x, y) = xy^3 - Cx + D_2 \)

How to find \(C, D_1 \text{ and } D_2 \)?
Use the 3 **boundary conditions**

\[
\begin{align*}
 u(0,0) &= 0 \\
 v(0,0) &= 0 \\
 v(2,0) &= 0
\end{align*}
\]

To obtain

\[
\begin{align*}
 C &= 0 \\
 D_1 &= 0 \\
 D_2 &= 0
\end{align*}
\]

Hence the solution is

\[
\begin{align*}
 u(x, y) &= x^2 y \\
 v(x, y) &= xy^3
\end{align*}
\]
Principle of Minimum Potential Energy

Definition: For a linear elastic body subjected to body forces \(\mathbf{X} = [X_a, X_b, X_c]^T \) and surface tractions \(\mathbf{T}_s = [p_x, p_y, p_z]^T \), causing displacements \(\mathbf{u} = [u, v, w]^T \) and strains \(\varepsilon \) and stresses \(\sigma \), the potential energy \(\Pi \) is defined as the strain energy minus the potential energy of the loads involving \(\mathbf{X} \) and \(\mathbf{T}_s \)

\[
\Pi = U - W
\]
\[
U = \frac{1}{2} \int_V \mathbf{\sigma}^T \mathbf{\varepsilon} \, dV
\]

\[
W = \int_V \mathbf{u}^T \mathbf{X} \, dV + \int_{S_T} \mathbf{u}^T \mathbf{T}_S \, dS
\]
Strain energy of the elastic body

Using the stress-strain law \(\sigma = D \varepsilon \)

\[
U = \frac{1}{2} \int_V \sigma^T \varepsilon \, dV = \frac{1}{2} \int_V \varepsilon^T D \varepsilon \, dV
\]

In 1D

\[
U = \frac{1}{2} \int_V \sigma \varepsilon \, dV = \frac{1}{2} \int_V E \varepsilon^2 \, dV = \frac{1}{2} \int_{x=0}^L E \varepsilon^2 \, Adx
\]

In 2D **plane stress** and **plane strain**

\[
U = \frac{1}{2} \int_V \left(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \tau_{xy} \gamma_{xy} \right) \, dV
\]

Why?
Principle of minimum potential energy: Among all **admissible** displacement fields the one that satisfies the equilibrium equations also render the potential energy Π a minimum.

“admissible displacement field”:
1. first derivative of the displacement components exist
2. satisfies the boundary conditions on S_u