Track21: Railway track for the 21st Century

Ballast & Sleepers

Antonis Zervos
University of Southampton
Faculty of Engineering and the Environment

Industry Steering Group – 13 December 2010
Objectives

- Develop fundamental understanding of how grading affects the internal stability, strength, resilient mechanical response and drainage of ballast.

- Investigate the potential of “soft” techniques to improve the characteristics of ballasted track systems.

- Investigate the potential of different sleeper types and sleeper/ballast interface modifications to improve the performance of ballasted track.
Progress

• Recruitment
 • 3 students recruited and about to start
 • Taufan Candra (Southampton)
 • Olufemi Ajayi (Southampton)
 • Sydney Laryea (Nottingham)
 • Identifying postdoc for practice review

• Modelling
 • Element and box tests using realistic DEM particles (Southampton and Nottingham)
Aims of modelling

- Detailed, particle-scale numerical investigation.
 - Effect of particle shape, grading, gluing, reinforcement and resin injection.
 - Understand in detail the mechanisms responsible for the observed behaviour.
Progress in modelling

- Box test
- Vertical cyclic load through sleeper

(Nottingham)
Progress in modelling

- Triaxial test
- Monotonic load
- **External view**
- **Slice view**

(Southampton)
Plans (next 6 months)

- 3 PhD students will start
 - Taufan Candra (Southampton)
 - Olufemi Ajayi (Southampton)
 - Sydney Laryea (Nottingham)
- Practice review
- Modelling
 - Continue refining current models.
 - Start introducing bonding/reinforcement.
Plans (next 6 months)

- Start two students working on rig tests.
 - Effect of sleeper type and interface modifications.

Industry Steering Group – 13 December 2010
Plans (next 6 months)

• Review of ballast specifications.
 – Literature, practice, field data.

• Start one student working on triaxial tests.
 – Initially coarse sand, scaled ballast soon after.
 – Effect of grading, gluing, reinforcement and resin injection.
Plans (next 6 months)

- Continue triaxial and box tests.
- Hollow-Cylinder tests.
 - Principal stress rotation.
- Start introducing bonding/reinforcement.
What we need

• Review of ballast specifications:
 – Access to literature, key people and field data.

• Triaxial tests and numerical modelling.
 – Practical bounds to particle size.
 – Other possible methods of reinforcement.

• Rig tests.
 – Sleeper types and materials that are more likely to be of practical use.
 – Other possible modifications that should be considered.
End of WA2