Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 1 9 8 7 6

The sponsoring editor for this book was Wendy Rinaldi, the editing supervisor was Jody McKenzie, and the production supervisor was Jean Bodeaux. It was set in Times Roman by International Typesetting and Composition. The art director for the cover was Handel Low.

Printed and bound by RR Donnelley.

McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, McGraw-Hill Professional, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (“McGraw-Hill”) from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.
From Arthur B. Williams
To my Family
Ellen, Howard, Bonnie, Robin, Mitchell
and grandchildren Leviah and Ilona

From Dr. Fred J. Taylor
To my grandchildren Schuyler, Bennett,
and Graysen and their
devoted grandmother Lori
ABOUT THE AUTHORS

Arthur Williams is the Chief Scientist at Telebyte Inc., a developer and manufacturer of broadband test equipment and data communication products. Previously, he was Senior Staff Engineer and Manager of Engineering for Tellabs Inc. Author of five books and holder of eleven patents, Mr. Williams has served as a consultant to the industry and is currently the Chairman of the IEEE Circuits and Systems (CAS) chapter on Long Island.

Fred J. Taylor is co-founder and Chairman of the Board of the Athena Group, a DSP semiconductor silicon intellectual property company and education technology innovator. He is also professor of electrical and computer engineering, and computer and information science engineering at the University of Florida. Author of ten textbooks and holder of three patents, Dr. Taylor serves as a consultant to Fortune 500 companies and government agencies.
CONTENTS

Preface xiii

Chapter 1. Introduction to Modern Network Theory 1

1.1. Modern Network Theory 1
 The Pole-Zero Concept 1
 Synthesis of Filters from Polynomials 2
 Active vs. Passive Filters 7
 Bibliography 8

Chapter 2. Selecting the Response Characteristic 9

2.1. Frequency-Response Normalization 9
 Frequency and Impedance Scaling 9
 Low-Pass Normalization 12
 High-Pass Normalization 14
 Bandpass Normalization 16
 Band-Reject Normalization 24

2.2. Transient Response 29
 The Effect of Nonuniform Time Delay 29
 Step Response of Networks 32
 Impulse Response 34
 Estimating Transient Characteristics 34

2.3. Butterworth Maximally Flat Amplitude 42

2.4. Chebyshev Response 47

2.5. Bessel Maximally Flat Delay 52

2.6. Linear Phase with Equiripple Error 64

2.7. Transitional Filters 64

2.8. Synchronously Tuned Filters 70

2.9. Elliptic-Function Filters 79
 Using the Filter Solutions (Book Version) Software for Design of Elliptic Function Low-Pass Filters 86
 Using the ELI 1.0 Program for the Design of Odd-Order Elliptic-Function Low-Pass Filters up to the 31st Order 87

2.10. Maximally Flat Delay with Chebyshev Stopband 88
 Bibliography 88

Chapter 3. Low-Pass Filter Design 89

3.1. LC Low-Pass Filters 89
 All-Pole Filters 89
Elliptic-Function Filters / 90
Duality and Reciprocity / 93
Designing for Unequal Terminations / 93
Effects of Dissipation / 97
Using Predistorted Designs / 99

3.2. Active Low-Pass Filters / 103
All-Pole Filters / 103
VCVS Uniform Capacitor Structure / 113
The Low-Sensitivity Second-Order Section / 114
Elliptic-Function VCVS Filters / 116
State-Variable Low-Pass Filters / 120
Generalized Impedance Converters / 128

Bibliography / 135

Chapter 4. High-Pass Filter Design

4.1. LC High-Pass Filters / 137
The Low-Pass to High-Pass Transformation / 137
The T-to-Pi Capacitance Conversion / 142

4.2. Active High-Pass Filters / 143
The Low-Pass to High-Pass Transformation / 143
All-Pole High-Pass Filters / 144
Elliptic-Function High-Pass Filters / 145
State-Variable High-Pass Filters / 151
High-Pass Filters Using the GIC / 159
Active Elliptic-Function High-Pass Filters Using the GIC / 161

Bibliography / 164

Chapter 5. Bandpass Filters

5.1. LC Bandpass Filters / 165
Wideband Filters / 165
Narrowband Filters / 167
Narrowband Coupled Resonators / 183
Predistorted Bandpass Filters / 189
Elliptic-Function Bandpass Filters / 192

5.2. Active Bandpass Filters / 199
Wideband Filters / 199
The Bandpass Transformation of Low-Pass Poles and Zeros / 202
Sensitivity in Active Bandpass Circuits / 207
All-Pole Bandpass Configurations / 207
Elliptic-Function Bandpass Filters / 224
State-Variable (Biquad) Circuit / 230

Bibliography / 237

Chapter 6. Band-Reject Filters

6.1. LC Band-Reject Filters / 239
The Band-Reject Circuit Transformation / 239
All-Pole Band-Reject Filters / 240
Elliptic-Function Band-Reject Filters / 245
Null Networks / 252

6.2. Active Band-Reject Filters / 257
Wideband Active Band-Reject Filters / 257
CONTENTS

Band-Reject Transformation of Low-Pass Poles / 261
Narrowband Active Band-Reject Filters / 265
Active Null Networks / 271
Bibliography / 277

Chapter 7. Networks for the Time Domain 279

7.1. All-Pass Transfer Functions / 279
 First-Order All-Pass Transfer Functions / 279
 Second-Order All-Pass Transfer Functions / 281
7.2. Delay Equalizer Sections / 283
 LC All-Pass Structures / 283
 Active All-Pass Structures / 287
7.3. Design of Delay Lines / 292
 The Low-Pass to All-Pass Transformation / 292
 LC Delay Lines / 293
 Active Delay Lines / 297
7.4. Delay Equalization of Filters / 299
 First-Order Equalizers / 300
 Second-Order Equalizers / 303
7.5. Wideband 90° Phase-Shift Networks / 307
7.6. Adjustable Delay and Amplitude Equalizers / 313
 LC Delay Equalizers / 314
 LC Delay and Amplitude Equalizers / 316
 Active Delay and Amplitude Equalizers / 319
Bibliography / 323

Chapter 8. Refinements in LC Filter Design and the Use of Resistive Networks 325

8.1. Introduction / 325
8.2. Tapped Inductors / 325
8.3. Circuit Transformations / 327
 Norton’s Capacitance Transformer / 328
 Narrowband Approximations / 330
8.4. Designing with Parasitic Capacitance / 333
8.5. Amplitude Equalization for Inadequate Q / 336
8.6. Coil-Saving Elliptic-Function Bandpass Filters / 340
8.7. Filter Tuning Methods / 343
8.8. Measurement Methods / 345
 Insertion Loss and Frequency Response / 345
 Time-Domain Characteristics / 347
 Measuring the Q of inductors / 351
8.9. Designing for Unequal Impedances / 351
 Impedance Matching / 351
 Exponentially Tapered Impedance Scaling / 351
 Minimum Loss Resistive Pad for Impedance Matching / 352
8.10. Symmetrical Attenuators / 355
 Bridged T Attenuator / 356
8.11. Power Splitters / 357
 Resistive Power Splitters / 357
 A Magic-T Splitter / 357
Bibliography / 360
Chapter 9. Design and Selection of Inductors for LC Filters

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1. Basic Principles of Magnetic-Circuit Design</td>
<td>361</td>
</tr>
<tr>
<td>Units of Measurement</td>
<td>361</td>
</tr>
<tr>
<td>Saturation and DC Polarization</td>
<td>362</td>
</tr>
<tr>
<td>Inductor Losses</td>
<td>363</td>
</tr>
<tr>
<td>Effect of an Air Gap</td>
<td>363</td>
</tr>
<tr>
<td>The Design of Coil Windings</td>
<td>364</td>
</tr>
<tr>
<td>9.2. MPP Toroidal Coils</td>
<td>367</td>
</tr>
<tr>
<td>Characteristics of Cores</td>
<td>367</td>
</tr>
<tr>
<td>Winding Methods for Q Optimization</td>
<td>371</td>
</tr>
<tr>
<td>Designing MPP Toroids from Q Curves</td>
<td>372</td>
</tr>
<tr>
<td>9.3. Ferrite Pot Cores</td>
<td>376</td>
</tr>
<tr>
<td>The Pot Core Structure</td>
<td>376</td>
</tr>
<tr>
<td>Electrical Properties of Ferrite Pot Cores</td>
<td>377</td>
</tr>
<tr>
<td>Winding of Bobbins</td>
<td>380</td>
</tr>
<tr>
<td>RM Cores</td>
<td>382</td>
</tr>
<tr>
<td>9.4. High-Frequency Coil Design</td>
<td>383</td>
</tr>
<tr>
<td>Powdered-Iron Toroids</td>
<td>383</td>
</tr>
<tr>
<td>Winding Methods</td>
<td>384</td>
</tr>
<tr>
<td>Air-Core Inductors</td>
<td>387</td>
</tr>
<tr>
<td>Surface Mount RF Inductors</td>
<td>387</td>
</tr>
<tr>
<td>Bibliography</td>
<td>392</td>
</tr>
</tbody>
</table>

Chapter 10. Component Selection for LC and Active Filters

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1. Capacitor Selection</td>
<td>393</td>
</tr>
<tr>
<td>Properties of Dielectrics</td>
<td>393</td>
</tr>
<tr>
<td>Capacitor Construction</td>
<td>394</td>
</tr>
<tr>
<td>Selecting Capacitors for Filter Applications</td>
<td>398</td>
</tr>
<tr>
<td>10.2. Resistors</td>
<td>403</td>
</tr>
<tr>
<td>Fixed Resistors</td>
<td>403</td>
</tr>
<tr>
<td>Variable Resistors</td>
<td>408</td>
</tr>
<tr>
<td>Resistor Johnson (Thermal) Noise</td>
<td>409</td>
</tr>
<tr>
<td>10.3. Operational Amplifiers</td>
<td>410</td>
</tr>
<tr>
<td>A Review of Basic Operational-Amplifier Theory</td>
<td>410</td>
</tr>
<tr>
<td>An Analysis of Non-Ideal Amplifiers</td>
<td>413</td>
</tr>
<tr>
<td>Practical Amplifier Considerations</td>
<td>415</td>
</tr>
<tr>
<td>Operational Amplifier Selection</td>
<td>417</td>
</tr>
<tr>
<td>A Survey of Popular Amplifier Types</td>
<td>419</td>
</tr>
<tr>
<td>10.4. General Manufacturing Considerations</td>
<td>422</td>
</tr>
<tr>
<td>Bibliography</td>
<td>423</td>
</tr>
</tbody>
</table>

Chapter 11. Normalized Filter Design Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
</table>

Chapter 12. Introduction to Digital Filters

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1. Introduction to Signal Processing</td>
<td>497</td>
</tr>
<tr>
<td>12.2. Introduction to Digital Signal Processing (DSP)</td>
<td>497</td>
</tr>
<tr>
<td>12.3. The Relation to Analog Filters</td>
<td>498</td>
</tr>
<tr>
<td>Digital Advantages</td>
<td>498</td>
</tr>
<tr>
<td>Analog Advantages</td>
<td>499</td>
</tr>
<tr>
<td>12.4. Signal Representation</td>
<td>500</td>
</tr>
</tbody>
</table>
12.5. Digital Data Representation / 500
12.6. Sampling Theorem / 505
12.7. Signal Reconstruction / 506
12.8. Practical Interpolators / 506
12.9. Sampling Modalities / 507
12.10. Aliasing / 507
12.11. Data Conversion / 509
12.12. Finite Wordlength Effects / 510
12.13. Mathematical Signal and System Representation / 512
Bibliography / 515

Chapter 13. Finite Impulse-Response Filters 517

13.1. Digital Filters / 517
13.2. FIR Digital Filters / 517
13.3. Stability / 519
13.4. Linear-Phase Behavior / 520
13.5. Non–Linear-Phase Behavior / 522
13.6. Minimum Phase Behavior / 523
13.7. Fir Design Methods / 524
13.8. Window Design Method / 524
13.9. Non-Rectangular Window Design Method / 526
13.10. Least Squares FIR Design / 530
13.11. Equiripple FIR Design / 532
13.12. Equiripple Hilbert FIR Design / 538
13.13. Equiripple Differentiator FIR Design / 538
13.14. Special Case FIR Digital Filters / 539
13.15. Multiplier-Free FIR Filters / 541
13.16. L-Band FIR Filters / 542
13.17. Mirror and Complement FIR Filters / 544
13.18. Frequency Sampling FIR Filters / 547
13.19. Savitzky-Golay FIR Filters / 550
13.20. Raised FIR Filters / 551
13.21. Matlab FIR Support / 553
13.22. Fir Architectures / 553
13.23. Direct Form FIR / 553
13.24. Transpose Form FIR / 557
13.25. Symmetric Form FIR / 558
13.26. Lattice Form FIR / 558
13.27. Distributed Arithmetic / 561
13.28. Canonic Signed Digit (CSD) / 564
13.29. Finite Wordlength Effect / 566
13.30. Coefficient Rounding / 567
13.31. Arithmetic Error / 568
13.32. Scaling / 569
13.33. Multiple Mac Architecture / 569
Bibliography / 571

Chapter 14. Infinite Impulse-Response Filters 573

14.1. Introduction / 573
14.2. Classic Analog Filters / 576
14.3. Matlab Analog Filter Production / 579
14.4. Impulse Invariant IIR / 580
Chapter 14. Electronic Filter Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5. Bilinear z-Transform IIR</td>
<td>583</td>
</tr>
<tr>
<td>14.6. Matlab Classic IIR Support</td>
<td>588</td>
</tr>
<tr>
<td>14.7. Other IIR Models</td>
<td>590</td>
</tr>
<tr>
<td>14.8. Comparison of FIR and IIR Filters</td>
<td>592</td>
</tr>
<tr>
<td>14.9. State Variable Filter Model</td>
<td>593</td>
</tr>
<tr>
<td>14.10. Architecture</td>
<td>595</td>
</tr>
<tr>
<td>14.11. Direct II Architecture</td>
<td>596</td>
</tr>
<tr>
<td>14.12. Matlab Direct II Architecture</td>
<td>598</td>
</tr>
<tr>
<td>14.13. Cascade Architecture</td>
<td>600</td>
</tr>
<tr>
<td>14.15. Parallel Architecture</td>
<td>604</td>
</tr>
<tr>
<td>14.16. Lattice/Ladder Architecture</td>
<td>605</td>
</tr>
<tr>
<td>14.17. Matlab Ladder/Lattice Support</td>
<td>608</td>
</tr>
<tr>
<td>14.18. Normal Architecture</td>
<td>609</td>
</tr>
<tr>
<td>14.19. Stability</td>
<td>611</td>
</tr>
<tr>
<td>14.20. Finite Wordlength Effects</td>
<td>612</td>
</tr>
<tr>
<td>14.21. Overflow Arithmetic</td>
<td>613</td>
</tr>
<tr>
<td>14.22. Register Overflow</td>
<td>614</td>
</tr>
<tr>
<td>14.23. Arithmetic Errors</td>
<td>617</td>
</tr>
<tr>
<td>14.24. Coefficient Rounding Errors</td>
<td>622</td>
</tr>
<tr>
<td>14.25. Scaling</td>
<td>623</td>
</tr>
<tr>
<td>Bibliography</td>
<td>626</td>
</tr>
</tbody>
</table>

Chapter 15. Multirate Digital Filters

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1. Introduction to Multi-Rate Signal Processing</td>
<td>627</td>
</tr>
<tr>
<td>15.2. Decimation</td>
<td>628</td>
</tr>
<tr>
<td>15.3. Interpolation</td>
<td>633</td>
</tr>
<tr>
<td>15.4. Sample Rate Conversion</td>
<td>636</td>
</tr>
<tr>
<td>15.5. Polyphase Representation</td>
<td>637</td>
</tr>
<tr>
<td>15.6. Filter Banks</td>
<td>642</td>
</tr>
<tr>
<td>15.7. DFT Filter Banks</td>
<td>647</td>
</tr>
<tr>
<td>15.8. Cascade Integrator Comb (CIC) Filter</td>
<td>649</td>
</tr>
<tr>
<td>15.9. Frequency Masking Filters</td>
<td>651</td>
</tr>
<tr>
<td>15.10. Matlab Multirate Support</td>
<td>656</td>
</tr>
<tr>
<td>Bibliography</td>
<td>658</td>
</tr>
</tbody>
</table>

Chapter 16. Digital Filter Technology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1. Introduction to Signal Processing</td>
<td>661</td>
</tr>
<tr>
<td>16.2. Processor Forms</td>
<td>662</td>
</tr>
<tr>
<td>16.3. General-Purpose Microprocessors (μPS)</td>
<td>664</td>
</tr>
<tr>
<td>16.4. DSP Processor</td>
<td>665</td>
</tr>
<tr>
<td>16.5. DSP Addressing Modes</td>
<td>667</td>
</tr>
<tr>
<td>16.6. Circular Buffering</td>
<td>668</td>
</tr>
<tr>
<td>16.7. DSP Processor Features</td>
<td>669</td>
</tr>
<tr>
<td>16.8. DSP Processor Parallelism</td>
<td>669</td>
</tr>
<tr>
<td>16.9. Fixed-Point vs. Floating-Point</td>
<td>670</td>
</tr>
<tr>
<td>16.10. DSP Benchmarks</td>
<td>670</td>
</tr>
<tr>
<td>16.11. ADC/DAC Operation</td>
<td>672</td>
</tr>
<tr>
<td>Delta-Sigma ADC</td>
<td>672</td>
</tr>
<tr>
<td>Flash ADC</td>
<td>672</td>
</tr>
<tr>
<td>Successive Approximation ADC</td>
<td>673</td>
</tr>
<tr>
<td>Subrange ADC</td>
<td>673</td>
</tr>
</tbody>
</table>
Chapter 17. Switched-Capacitor Filters

17.1. Introduction / 701
17.2. The Theory of Switched-Capacitor Filters / 701
 The Switched Resistor / 701
 The Basic Integrator as a Building Block / 702
 The Limitations of Switched-Capacitor Filters / 703
17.3. Universal Switched-Capacitor Second-Order Filters / 704
 Modes of Operation / 705
 Operating Mode Features / 705
 Using the MF10 and LMF100 Dual Universal Second-Order Filter / 709
17.4. Types of Switched-Capacitor Filters / 712
 Universal / 712
 Microprocessor Programmable Universal Switched Capacitor Filters / 714
 Pin Programmable Universal Switched Capacitor Filters / 714
 Dedicated Switched Capacitor Filters / 714
17.5. FilterCAD 3.0 Software / 717
17.6. The Switched Capacitor Filter Selection Guide / 717
Bibliography / 717

Chapter 18. Introduction to Microwave Filters

18.1. Implementation of Filters / 719
18.2. Microstrip and Stripline Transmission Lines / 719
18.3. Richards’ Transformation / 720
 Line with Short Circuit at Output / 722
 Line with Open Circuit at Output / 722
18.4. Kuroda’s Identities / 724
 Series to Shunt Stub / 724
 Shunt to Series Stub / 725
 Combining Richards’ Transformation and Kuroda’s Identities to Design
 a Low-Pass Filter / 725
18.5. Bandpass Filters / 728
 Bandpass Filters Using Shorted Parallel Stubs / 728
 Bandpass Filters Using Edge-Coupled Half-Wavelength Lines / 729
18.6. Additional Design Methods Using PC Board Traces / 730
 Using PC Board Traces to Replace Inductors and Capacitors / 730
Bibliography / 731
Appendix A. Discrete Systems Mathematics 733

A.1. Digital Filter Mathematics (The z-Transform) / 733
A.2. Inverse z-Transform / 741
A.3. Matlab Inversion / 753
A.4. Discrete Fourier Transform (DFT) / 758
A.5. DFT Error Sources / 762
Bibliography / 765

Appendix B. Software Summary 767

B.1. The Fltrform.xls Spreadsheet of Formulas / 767
B.2. Filter Solutions (Book Version) Software for the Design of Elliptic-Function Low-Pass Filters / 767
B.3. ELI 1.0 for the Design of Odd-Order Elliptic-Function Low-Pass Filters up to the 31st Order / 768
B.4. FilterCAD 3.0 for the Design of Switched Capacitor Filters / 768
B.5. TX Line for the Design of Microstrip, Stripline, and Other Structures for Microwave Filters / 768

Index 769
This is the fourth edition of the *Electronic Filter Design Handbook*, which was first published in 1981. It was expanded in 1988 to include five additional chapters on digital filters and then updated in 1995. This revised edition contains new material on both analog and digital filters. A CD-ROM has been included containing a number of programs which allow the rapid design of analog filters for input requirements without the tedious mathematical computations normally encountered. The digital filter chapters are all integrated with a profusion of MATLAB examples.

Prior to the introduction of this book in 1981, the design of LC and active filters had been reserved for specialists. The *Electronic Filter Design Handbook* treated the design of these filters in a practical manner and provided extensive tabulated data so that the average engineer who had no previous experience could design passive or active filters. This philosophy was expanded to include digital filters in the second edition in 1988, where, for the first time in any book, the design of all three classes of filters was covered in a practical easy-to-follow style. The book was then further updated in its third edition in 1995 to include a number of new technologies and design methods. In this fourth edition, the book now contains additional material and chapters on analog filters, and has been updated on available components to include surface mount technology. A number of powerful design programs have been included on the CD-ROM. Some of the previously included tables on normalized elliptic-function low-pass filters have been replaced by a powerful program, *Filter Solutions* (from Nuhertz Technologies®), which can directly design these filters and create a schematic without tedious calculations. An EXCEL spreadsheet contains formulas from the individual chapters keyed to the text so that the tedious calculations required in the past are no longer necessary.

The digital filter chapters have been completely revised and the vast majority of the material is new. This new edition contains all the topics and studies found in the previous version of the *Electronic Filter Design Handbook*, plus many more that cover the full range of modern fixed-coefficients digital filter design. The coverage provides the reader with both a conceptual understanding of digital filters and the ability to design digital filters for use in a number of application domains. The presentation keeps in mind that traditional digital filters, used a decade ago, remain in popular use today. It’s also recognized that non-traditional and multirate filters are of growing importance. Thus, basic digital filter design methods are presented, along with an enriched treatment on multirate solutions. Strong emphasis is placed on achieving filter-technology synergy, which considers issues related to the physical implementation of a digital filter in either hardware or software. This fourth edition also presumes that contemporary engineers will increasingly turn to the computer software to support filter design and analysis activities. These activities are motivated and supported with a profusion of computer-generated examples using the ubiquitous MATLAB software package.

Chapter 1 introduces the concept of modern network theory and discusses the trade-off between active and passive filter implementations.

The mathematical properties of standard filter response types are covered in Chapter 2, including Butterworth, Chebyshev, Bessel, linear phase with equiripple error, transitional,
synchronously tuned, and constant delay with Chebyshev stopband. Extensive normalized
curves for both frequency and time-domain parameters of these standard polynomial trans-
fer functions are provided. The highly efficient elliptic-function filter response is also dis-
cussed in this chapter and emphasized throughout the handbook. Two programs contained
on the CD-ROM, Filter Solutions (book version) and ELI 1.0 (for the design of elliptic-
function filters), are introduced.

In Chapter 3 the design of both passive and active low-pass filters is covered using nor-
malized tables. Specialized passive low-pass filter design techniques are illustrated, such
as designing for unequal terminations and compensating for the effects of component dis-
sipation (low Q). Various active low-pass filter structures are covered for both all-pole and
elliptic-function types.

High-pass filters for both passive and active implementations are discussed in Chapter 4.

Chapter 5 covers bandpass filters. Various passive filter transformations, approximations,
and identities are illustrated to ensure practical element values even for extreme conditions
of center frequency, bandwidth, or impedance level. Some active bandpass implementations
are offered that exhibit low sensitivity at frequencies previously considered too high for active
filters.

Techniques for band-reject filter design are presented in Chapter 6, where passive and
active types are covered.

Chapter 7 covers the design of networks having properties best described in the time
domain. All-pass delay and amplitude equalizers are discussed in detail. Methods are shown
for the design of LC, as well as active delay lines and wideband 90° phase shift networks.

Refinements in LC filter design are covered in Chapter 8. Special techniques are pre-
sented to manipulate element values so that practical values can always be obtained. Here,
measurement techniques are shown, and the design of various forms of resistive attenua-
tors for attenuation and impedance matching is covered. The theory and design of power
splitting networks is also explained.

The successful operation of LC filter design is highly dependent upon the proper selec-
tion and manufacture of inductors. The design of magnetic components is presented in
Chapter 9. The entire process—ranging from the selection of various magnetic material
types and shapes to coil-winding methods to achieve the optimum characteristics over the
operating frequency range—is explained in detail. New magnetic materials and shapes are
covered. Q curves are also provided, as well as those for MPP torroidal cores, ferrite RM
and potcores, and surface mount RF inductors.

The component selection for LC and active filters is discussed in Chapter 10. Coverage
includes capacitor characteristics and the selection of fixed and variable resistor types. Johnson
(Thermal) noise is also discussed. Operational amplifier theory is reviewed both from a theo-
retical and a practical standpoint, and expanded and updated device selection charts are pro-
vided to enable the rapid choice of the appropriate operational amplifier for a given filter
configuration and required operating frequency range. Surface-mount (SMD) components are
also emphasized, as well as the manufacturing considerations using this technology.

Chapter 11 contains normalized tables for the rapid design of both passive and active
filters. In addition to the standard polynomial types, tables are provided for the unique
constant-delay low-pass filters with Chebyshev stopband characteristics.

Chapter 12 introduces digital filters. The presentation begins with a differentiation of
analog and digital systems, representations, and design strategies. The sampling theory
is established as being a core element in the understanding and realization of digital filters,
and issues such as quantifying sampling modalities and aliasing are discussed. Data con-
version principles and mechanics (to and from the analog domain) are developed, and the
chapter closes with a discussion of computer arithmetic and spectral analysis.

Finite impulse-response filters (FIR) are discussed in Chapter 13. The chapter begins
with a general characterization of FIR filters, including stability. Both linear and non-linear
phase FIR are studied in detail, and FIR design procedures based on the window, least-squares, and equiripple methods are presented, as well as the extension of their use as Hilbert and differentiating FIRs. FIR special cases, such as comb, moving average, L-band, mirror, complement, and frequency sampling forms are also described and illustrated. The FIR design strategies are reinforced using MATLAB FIR architectures, including direct, transpose, symmetric, lattice, distribute, and canonic digit form are developed in detail. The chapter concludes with a study of finite word length effects.

Chapter 14 covers the infinite impulse-response (IIR) filters. The presentation begins with a general characterization of FIR filters, including stability. A review of classic analog filters, Butterworth, Chebyshev I and II, and elliptic (Cauer) are presented and used to define classic digital IIR filters. The conversion of analog filters to digital IIR filters are examined in terms of impulse invariant and bilinear \(z \)-transforms. The design of an IIR, based upon measured input-output responses, is also presented in terms of auto-regressive models. The IIR filter design process is illustrated using MATLAB IIR filters are described using a natural state variable analysis framework, which is interpreted in terms of a Direct I and II, Cascade, Parallel, Normal, and Lattice architectures. The state variable models are next reinforced using MATLAB. The chapter concludes with an exposition of the analysis procedures required to insure a successful fixed-point IIR implementation and how to minimize run-time finite wordlength (fixed-point) errors.

Multirate filters are discussed in Chapter 15. The presentation begins with a general characterization of multirate systems and their use. Following this, the process of decimation and interpolation are developed, along with sample rate conversion. Multirate systems are then presented using a polyphase framework that is extended to the design filter banks and DFT filter banks. The chapter concludes with the development of high decimation rate filters and frequency masked filters.

Chapter 16 covers the field of digital filter technology. The presentation begins with an overview of technology types including general purpose \(\mu \)Ps, DSP \(\mu \)Ps, application-specific integrated circuits (ASIC), and field programmable gate arrays (FPGA). Various processor organizations are examined. Processor architectural variations and their impact on design choices are developed and compared. A discussion of analog to digital (ADC) architectures is presented and used to define and compare various types of converter architectures. Next, software issues and opportunities are developed and analyzed. The chapter concludes with a filter implementation case study based on Texas Instruments DSP \(\mu \)P processor architecture.

Chapter 17 covers switched-capacitor filters. The underlying theory behind this technology is presented, and some design examples are shown using standard building-block ICs. A survey and a convenient selection guide (updated) is included, as well as a program called FilterCAD on the CD-ROM. The latter program (from Linear Technology) can help to quickly design a switched-capacitor filter from a set of input parameters. It then provides a schematic of the filter along with both the predicted frequency response and time response.

Chapter 18 is an introduction to microwave filters. It discusses Kuroda’s Identities and Richards’ Transformation and illustrates some design examples of microstrip filters.

Appendix A provides a review of DSP mathematics. The presentation begins with a comprehensive study of the \(z \)-transform and inverse \(z \)-transform. Transforms are then investigated using MATLAB. The chapter concludes with a discussion of the discrete Fourier transform (DFT).

The authors would like to thank Leo Moodenbaugh of Telebyte Inc., and Michael Christensen of the University of Florida for their assistance.